Euler's φ Function

Definition

$\phi(n)$ is the number of integers between 0 and n-1 who is coprime with n. $\phi(n):=|{a: 0 \leqslant a<n \wedge(a, n)=1}|$

Properties

  1. Let a be an integer comprime with n. Then $a ^ { \phi ( n ) } \equiv 1 \bmod n$
  2. (m,n)=1 $\implies \phi(mn)=\phi(m) \cdot \phi(n)$
  3. $\sum _ { d \mid n } \phi ( d ) = n$