First Isomorphism Theorem for Groups

First Isomorphism Theorem for Groups If \( \phi : G \rightarrow H \) is a homomorphism then

\[ G / \operatorname { ker } ( \phi ) \cong \operatorname { im } ( \phi ) \]

Proof. Define a mapping \( f:G / \operatorname { ker } ( \phi ) \rightarrow \operatorname { im } ( \phi ) \) by \( f(a\operatorname { ker } ( \phi ))= \phi (a) \)

The map is well-defined since if \( a\operatorname { ker } ( \phi )=b\operatorname { ker } ( \phi ) \), then \( a^{-1}b \in \operatorname { ker } ( \phi ) \) and

\[ f(a\operatorname { ker } ( \phi ))= \phi (a)\cdot e_H=\phi (a)\cdot \phi (a^{-1}b)=\phi(b)=f(b\operatorname { ker } ( \phi )) \]

Let \( h \) be an arbitrary element of \( \operatorname { im } ( \phi ) \), then \( \exists g \in G : \phi(g)=h \). Since \( f(g\operatorname { ker } ( \phi ))=\phi(g)=h \), \( f:G / \operatorname { ker } ( \phi ) \rightarrow \operatorname { im } ( \phi ) \) is surjective. It is also injective because \( f(a\operatorname { ker } ( \phi ))=f(b\operatorname { ker } ( \phi )) \implies \phi(a)=\phi(b) \implies \phi(a)\phi(b^{-1})=e_H \)\( \implies ab^{-1}\in \operatorname { ker } ( \phi ) \implies a\operatorname { ker } ( \phi )=b\operatorname { ker } ( \phi ) \)


\( f:G / \operatorname { ker } ( \phi ) \rightarrow \operatorname { im } ( \phi ) \) is a homomorphism since

\[ f(a\operatorname { ker } ( \phi ) \cdot b\operatorname { ker } ( \phi ))=f((ab)\operatorname { ker } ( \phi ))=\phi(ab)=\phi(a)\phi(b)=f(a\operatorname { ker } ( \phi ) )f( b\operatorname { ker } ( \phi )) \]

◻︎