Proposition
If
- \( \forall s \in S, s\in A_1 \cup A_2 \, \land \, A_1 \cup A_2 = \varnothing \)
- \( s\in A_1 \implies s \in B_1 \, \land \, s\in A_2 \implies s \in B_2 \)
- \( \forall s \in S, s\in B_1 \cup B_2 \, \land \, B_1 \cup B_2 = \varnothing \)
Then \( \forall s \in S, s\in B_1 \implies s \in A_1 \, \land \, s\in B_2 \implies s \in A_2 \)
Proof.
\( (s\in A_2 \implies s \in B_2) \iff \{ \lnot (s \in B_2) \implies \lnot (s\in A_2) \} \)
Since \( B_1, B_2 \) partition \( S \), \( s \not\in B_2 \iff s\in B_1 \). Similarly, \( s \not\in A_2 \iff s\in A_1 \)
Thus, \( (s\in A_2 \implies s \in B_2) \iff (s\in B_1 \implies s \in A_1) \)
Similarly, \( (s\in A_1 \implies s \in B_1) \iff (s\in B_2 \implies s \in A_2) \)
◻︎
Corollary
If
- \( \forall s \in S, s\in A_1 \cup A_2 \cup \cdots \cup A_n \, \land \, A_1,A_2,\ldots,A_n \) are pairwise disjoint
- \( s\in A_i \implies s \in B_i \)
- \( \forall s \in S, s\in B_1 \cup B_2 \cup \cdots \cup B_n \, \land \, B_1,B_2,\ldots,B_n \) are pairwise disjoint
Then \( \forall s \in S, s\in B_i \implies s \in A_i \)
PREVIOUSFundamental 1-unit in Z√d
NEXTPell's equation